In the Electrical Circuit Lab students can create their own electrical circuits and do measurements on it. In the circuits the students can use resistors, light bulbs, switches, capacitors and coils. The circuits can be powered by a AC/DC power supply or batteries.
Subject Domains
- Astronomical Objects And Their Characteristics
- Astronomy Related Sciences And Fields Of Study
- Effect And Phenomena
- Terms And Concepts
- Botany
- Ecology
- Humans And Animals
- Life Processes
- Variation, Inheritance And Evolution
- Analytical Chemistry
- Chemical Reactions
- Inorganic Chemistry
- Organic Chemistry
- Physical Chemistry
- Biomedical Engineering
- Civil Engineering
- Electrical Engineering
- Mechanical Engineering
- Climate
- Energy
- Environment
- Environmental Protection
- Natural Resources
- Earth Science
- Geography
- Algebra And Number Theory
- Applied Mathematics
- Differential And Difference Equation
- Geometry
- Logic And Foundations
- Numbers And Computation
- Statistics And Probability
- Topic From Subjects
- Electricity And Magnetism
- Energy
- Fields
- Forces And Motion
- High Energy Physics
- History Of Science And Technology
- Light
- Radioactivity
- Solids, Liquids And Gases
- Sound
- Technological Applications
- Tools For Science
- Useful Materials And Products
- Waves
- Computer Science And Technology
- Design
- Electricity - Electronics
- Industry
- Mechanics
- Production
Astronomy
Biology
Chemistry
Engineering
Environmental Education
Geography And Earth Science
Mathematics
Physics
Technology
Big Ideas Of Science
- Energy Transformation
- Fundamental Forces
- Our Universe
- Structure Of Matter
- Microcosm (Quantum)
- Evolution And Biodiversity
- Organisms And Life Forms
- Planet Earth
Lab Types
- Remote Lab
- Virtual Lab
- Data Set
Age Ranges
- Before 7
- 7-8
- 9-10
- 11-12
- 13-14
- 15-16
- Above 16
Languages
- Afrikaans
- Albanian
- Arabic
- Basque
- Belarusian
- Bosnian
- Bulgarian
- Catalan
- Central Khmer
- Croatian
- Czech
- Danish
- Dutch
- English
- Estonian
- Finnish
- French
- Galician
- Georgian
- German
- Greek
- Haitian
- Hindi
- Hungarian
- Icelandic
- Italian
- Japanese
- Kannada
- Kazakh
- Korean
- Kurdish
- Lao
- Latvian
- Macedonian Slavic
- Malay
- Malayalam
- Maori
- Marathi
- Norwegian Bokmål
- Norwegian Nynorsk
- Oriya
- Persian
- Polish
- Portuguese
- Pushto
- Romanian
- Russian
- Serbian
- Simplified Chinese
- Sinhala
- Slovak
- Slovenian
- Spanish
- Swahili
- Swedish
- Tamil
- Telugu
- Thai
- Tibetan
- Traditional Chinese
- Turkish
- Turkmen
- Ukrainian
- Vietnamese
- Welsh
Apply
Reset
Online labs provide your students with the possibility to conduct scientific experiments in an online environment. Remotely-operated labs (remote labs) offer an opportunity to experiment with real equipment from remote locations. Virtual labs simulate the scientific equipment. Data sets present data from already performed lab experiments. Please use the filters on the right to find appropriate online labs for your class. Labs can be combined with dedicated Apps to create Inquiry Learning Spaces (ILSs).
If you are looking for online labs especially suitable for the curricula of Benin, Kenya or Nigeria, please visit our Collections page.

This simulation visualizes the process of radioactive decay for different groups of elements - radium series, actinium series, thorium series and neptunium series.

There are two similar labs that you can see if you create a space, feel free to choose which one to use. Please note that while the preview shows you only one, the screenshots present both labs.

A drawing-based learning environment for the gears domain. The primary aims of the lab are: Let students to explore the ways in which gears and chains transmit motion.

Welcome to the GoLab Wind Energy Simulation. Take control of a wind farm to provide electricil energy to a small town. Understand how random changes - in wind speed and power requirement of the town - affect the use of this natural energy resource.

In this lab, you can explore the diffraction of waves through a single slit and double-slit interference pattern.

Explore the forces at work when pulling against a cart,and pushing a refrigerator, crate, or person. Create an applied force and see how it makes objects move. Change friction and see how it affects the motion of objects.Aims of the lab:

The Simple Harmonic Oscillator JS Model displays the dynamics of a ball attached to an ideal spring. The spring is initially stretched and the ball has zero initial velocity. The initial position of the ball can be changed by click-dragging the ball when the simulation is paused.

This lab allows students to watch different types of molecules form a solid, liquid, or gas.