Subject Domains
    Astronomy
    • Astronomical Objects And Their Characteristics
    • Astronomy Related Sciences And Fields Of Study
    • Effect And Phenomena
    • Terms And Concepts
    Biology
    • Botany
    • Ecology
    • Humans And Animals
    • Life Processes
    • Variation, Inheritance And Evolution
    Chemistry
    • Analytical Chemistry
    • Chemical Reactions
    • Inorganic Chemistry
    • Organic Chemistry
    • Physical Chemistry
    Engineering
    • Biomedical Engineering
    • Civil Engineering
    • Electrical Engineering
    • Mechanical Engineering
    Environmental Education
    • Climate
    • Energy
    • Environment
    • Environmental Protection
    • Natural Resources
    Geography And Earth Science
    • Earth Science
    • Geography
    Mathematics
    • Algebra And Number Theory
    • Applied Mathematics
    • Differential And Difference Equation
    • Geometry
    • Logic And Foundations
    • Numbers And Computation
    • Statistics And Probability
    • Topic From Subjects
    Physics
    • Electricity And Magnetism
    • Energy
    • Fields
    • Forces And Motion
    • High Energy Physics
    • History Of Science And Technology
    • Light
    • Radioactivity
    • Solids, Liquids And Gases
    • Sound
    • Technological Applications
    • Tools For Science
    • Useful Materials And Products
    • Waves
    Technology
    • Computer Science And Technology
    • Design
    • Electricity - Electronics
    • Industry
    • Mechanics
    • Production
Big Ideas Of Science
  • Energy Transformation
  • Fundamental Forces
  • Our Universe
  • Structure Of Matter
  • Microcosm (Quantum)
  • Evolution And Biodiversity
  • Organisms And Life Forms
  • Planet Earth
Lab Types
  • Remote Lab
  • Virtual Lab
  • Data Set
Age Ranges
  • Before 7
  • 7-8
  • 9-10
  • 11-12
  • 13-14
  • 15-16
  • Above 16
Languages
  • Afrikaans
  • Albanian
  • Arabic
  • Basque
  • Belarusian
  • Bosnian
  • Bulgarian
  • Catalan
  • Central Khmer
  • Croatian
  • Czech
  • Danish
  • Dutch
  • English
  • Estonian
  • Finnish
  • French
  • Galician
  • Georgian
  • German
  • Greek
  • Haitian
  • Hindi
  • Hungarian
  • Icelandic
  • Italian
  • Japanese
  • Kannada
  • Kazakh
  • Korean
  • Kurdish
  • Lao
  • Latvian
  • Macedonian Slavic
  • Malay
  • Malayalam
  • Maori
  • Marathi
  • Norwegian Bokmål
  • Norwegian Nynorsk
  • Oriya
  • Persian
  • Polish
  • Portuguese
  • Pushto
  • Romanian
  • Russian
  • Serbian
  • Simplified Chinese
  • Sinhala
  • Slovak
  • Slovenian
  • Spanish
  • Swahili
  • Swedish
  • Tamil
  • Telugu
  • Thai
  • Tibetan
  • Traditional Chinese
  • Turkish
  • Turkmen
  • Ukrainian
  • Vietnamese
  • Welsh
Apply
Reset

Online labs provide your students with the possibility to conduct scientific experiments in an online environment. Remotely-operated labs (remote labs) offer an opportunity to experiment with real equipment from remote locations. Virtual labs simulate the scientific equipment. Data sets present data from already performed lab experiments. Please use the filters on the right to find appropriate online labs for your class. Labs can be combined with dedicated Apps to create Inquiry Learning Spaces (ILSs).

If you are looking for online labs especially suitable for the curricula of Benin, Kenya or Nigeria, please visit our Collections page.

Microcosm (Quantum)
Sort by

No votes have been submitted yet.

In this lab, you can observe the spectrum of light emitted by a blackbody as a function of wavelength. Adjust the temperature to see how changing the temperature changes the amount of light emitted by the blackbody, as well as the peak wavelength of the light.

No votes have been submitted yet.

You can observe the light emitted by excited gas atoms of particular elements in this lab. In some sense, these are atomic fingerprints. Note that the lines are shown are the brightest lines in a spectrum - you may be able to see additional lines if you look at the spectrum from a real gas tube.

No votes have been submitted yet.

In this lab, you can observe the radioactive decay of 400 radioactive nuclei. You can choose from three different half-lives. Note that the nuclei turn blue when they have decayed, and the smooth purple line on the graph shows the ideal case.

No votes have been submitted yet.

In this lab, you can observe the radioactive decay of 400 radioactive nuclei. You can choose from three different half-lives. Note that the nuclei turn blue when they have decayed, and the smooth purple line on the graph shows the ideal case.

No votes have been submitted yet.

In this lab, you can explore what happens when polarized light passes through an optically active material - that is the object labeled as the filter above. An optically active material is made up of chiral molecules - the molecules has a spiral shape.

No votes have been submitted yet.

In this lab, you can explore what happens when unpolarized light, with an intensity of 800 W/m2 is incident on a sequence of three polarizers. The light is traveling in the +x direction and the polarizers are located at x = 10 cm, x = 20 cm, and x = 30 cm.

No votes have been submitted yet.

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall. Learning goals

No votes have been submitted yet.

The photoelectric effect is playing a major role in the development of quantum physics. Here one can investigate the energy of electrons which are released by irradiating light on metals. These observations are leading to the particle model of light (light as a photon).

No votes have been submitted yet.

The aim of this experiment, which is important as an introduction to quantum physics, is to understand the wave properties of the electron postulated by de Broglie as well as to model solid-state crystal structures microscopically.

Rating: 5 - 1 votes

CERNland contains games on all topics related to the CERN activity. It is the virtual theme park developed to bring the excitement of CERN's research to a young audience aged between 7 and 12.