Subject Domains
    Astronomy
    • Astronomical Objects And Their Characteristics
    • Astronomy Related Sciences And Fields Of Study
    • Effect And Phenomena
    • Terms And Concepts
    Biology
    • Botany
    • Ecology
    • Humans And Animals
    • Life Processes
    • Variation, Inheritance And Evolution
    Chemistry
    • Analytical Chemistry
    • Chemical Reactions
    • Inorganic Chemistry
    • Organic Chemistry
    • Physical Chemistry
    Engineering
    • Biomedical Engineering
    • Civil Engineering
    • Electrical Engineering
    • Mechanical Engineering
    Environmental Education
    • Climate
    • Energy
    • Environment
    • Environmental Protection
    • Natural Resources
    Geography And Earth Science
    • Earth Science
    • Geography
    Mathematics
    • Algebra And Number Theory
    • Applied Mathematics
    • Differential And Difference Equation
    • Geometry
    • Logic And Foundations
    • Numbers And Computation
    • Statistics And Probability
    • Topic From Subjects
    Physics
    • Electricity And Magnetism
    • Energy
    • Fields
    • Forces And Motion
    • High Energy Physics
    • History Of Science And Technology
    • Light
    • Radioactivity
    • Solids, Liquids And Gases
    • Sound
    • Technological Applications
    • Tools For Science
    • Useful Materials And Products
    • Waves
    Technology
    • Computer Science And Technology
    • Design
    • Electricity - Electronics
    • Industry
    • Mechanics
    • Production
Big Ideas Of Science
  • Energy Transformation
  • Fundamental Forces
  • Our Universe
  • Structure Of Matter
  • Microcosm (Quantum)
  • Evolution And Biodiversity
  • Organisms And Life Forms
  • Planet Earth
Lab Types
  • Remote Lab
  • Virtual Lab
  • Data Set
Age Ranges
  • Before 7
  • 7-8
  • 9-10
  • 11-12
  • 13-14
  • 15-16
  • Above 16
Languages
  • Afrikaans
  • Albanian
  • Arabic
  • Basque
  • Belarusian
  • Bosnian
  • Bulgarian
  • Catalan
  • Central Khmer
  • Croatian
  • Czech
  • Danish
  • Dutch
  • English
  • Estonian
  • Finnish
  • French
  • Galician
  • Georgian
  • German
  • Greek
  • Haitian
  • Hindi
  • Hungarian
  • Icelandic
  • Italian
  • Japanese
  • Kannada
  • Kazakh
  • Korean
  • Kurdish
  • Lao
  • Latvian
  • Macedonian Slavic
  • Malay
  • Malayalam
  • Maori
  • Marathi
  • Norwegian Bokmål
  • Norwegian Nynorsk
  • Oriya
  • Persian
  • Polish
  • Portuguese
  • Pushto
  • Romanian
  • Russian
  • Serbian
  • Simplified Chinese
  • Sinhala
  • Slovak
  • Slovenian
  • Spanish
  • Swahili
  • Swedish
  • Tamil
  • Telugu
  • Thai
  • Tibetan
  • Traditional Chinese
  • Turkish
  • Turkmen
  • Ukrainian
  • Vietnamese
  • Welsh
Apply
Reset

Online labs provide students with the possibility to conduct scientific experiments in an online environment. Remotely-operated labs (remote labs) offer an opportunity to experiment with real equipment from remote locations. Virtual labs simulate the scientific equipment. Data sets present data from already performed lab experiments. Please use the filters on the right to find appropriate online labs for your class.

Please note that the Go-Lab Authoring Platform Graasp is no longer maintained. This means that it is not possible to create and publish new Go-Lab Inquiry Learning Spaces using the labs listed on this page. However, you can still access the labs and use them directly on the providers' websites with help of the preview links, which you will find on the dedicated lab pages. If you are interested in creating and using Inquiry Learning Spaces in your classroom, please visit the new Authoring Platform Graasp.org

If you are looking for online labs selected for the curricula of Benin, Kenya or Nigeria, please visit our Collections page.

If you select labs in English, the descriptions on this website will still be displayed in English. However, when you include the lab in an ILS and change the language setting of the ILS to English, the lab will be displayed in English within the ILS.

Energy Transformation
Forces And Motion
Above 16
English
Sort by

Rating: 4.5 - 12 votes

In the Electrical Circuit Lab students can create their own electrical circuits and do measurements on it. In the circuits the students can use resistors, light bulbs, switches, capacitors and coils. The circuits can be powered by a AC/DC power supply or batteries.

Rating: 5 - 2 votes

A drawing-based learning environment for the gears domain. The primary aims of the lab are: Let students to explore the ways in which gears and chains transmit motion.

Rating: 5 - 1 votes

This lab is designed to have students discover the relationship between the work that is done and the changes to height that occur to an object. Students can adjust the amount of energy added to the object. They can test five different masses.

No votes have been submitted yet.

The Simple Harmonic Oscillator JS Model displays the dynamics of a ball attached to an ideal spring.  The spring is initially stretched and the ball has zero initial velocity.  The initial position of the ball can be changed by click-dragging the ball when the simulation is paused.

Rating: 3.8 - 4 votes

There are two similar labs that you can see if you create a space, feel free to choose which one to use. Please note that while the preview shows you only one, the screenshots present both labs.

No votes have been submitted yet.

Light a light bulb by waving a magnet. This demonstration of Faraday's Law shows you how to reduce your power bill at the expense of your grocery bill.

No votes have been submitted yet.

Demonstrate the friction law.

No votes have been submitted yet.

Stretch and compress springs to explore the relationships between force, spring constant, displacement, and potential energy! Investigate what happens when two springs are connected in series and parallel.

No votes have been submitted yet.

This simulation allows you to visualize the gravitational interactions between 4 particles. You can click-and-drag the particles to move them around, and use the sliders to change their masses.

No votes have been submitted yet.

This simulation shows the energy associated with the Earth as it orbits the Sun. You can try different Earth's - our's is the one with v = 1.0 (roughly times 30000 m/s), the speed needed to go in a circle around the Sun.