Subject Domains
    Astronomy
    • Astronomical Objects And Their Characteristics
    • Astronomy Related Sciences And Fields Of Study
    • Effect And Phenomena
    • Terms And Concepts
    Biology
    • Botany
    • Ecology
    • Humans And Animals
    • Life Processes
    • Variation, Inheritance And Evolution
    Chemistry
    • Analytical Chemistry
    • Chemical Reactions
    • Inorganic Chemistry
    • Organic Chemistry
    • Physical Chemistry
    Engineering
    • Biomedical Engineering
    • Civil Engineering
    • Electrical Engineering
    • Mechanical Engineering
    Environmental Education
    • Climate
    • Energy
    • Environment
    • Environmental Protection
    • Natural Resources
    Geography And Earth Science
    • Earth Science
    • Geography
    Mathematics
    • Algebra And Number Theory
    • Applied Mathematics
    • Differential And Difference Equation
    • Geometry
    • Logic And Foundations
    • Numbers And Computation
    • Statistics And Probability
    • Topic From Subjects
    Physics
    • Electricity And Magnetism
    • Energy
    • Fields
    • Forces And Motion
    • High Energy Physics
    • History Of Science And Technology
    • Light
    • Radioactivity
    • Solids, Liquids And Gases
    • Sound
    • Technological Applications
    • Tools For Science
    • Useful Materials And Products
    • Waves
    Technology
    • Computer Science And Technology
    • Design
    • Electricity - Electronics
    • Industry
    • Mechanics
    • Production
Big Ideas Of Science
  • Energy Transformation
  • Fundamental Forces
  • Our Universe
  • Structure Of Matter
  • Microcosm (Quantum)
  • Evolution And Biodiversity
  • Organisms And Life Forms
  • Planet Earth
Lab Types
  • Remote Lab
  • Virtual Lab
  • Data Set
Age Ranges
  • Before 7
  • 7-8
  • 9-10
  • 11-12
  • 13-14
  • 15-16
  • Above 16
Languages
  • Afrikaans
  • Albanian
  • Arabic
  • Basque
  • Belarusian
  • Bosnian
  • Bulgarian
  • Catalan
  • Central Khmer
  • Croatian
  • Czech
  • Danish
  • Dutch
  • English
  • Estonian
  • Finnish
  • French
  • Galician
  • Georgian
  • German
  • Greek
  • Haitian
  • Hindi
  • Hungarian
  • Icelandic
  • Italian
  • Japanese
  • Kannada
  • Kazakh
  • Korean
  • Kurdish
  • Lao
  • Latvian
  • Macedonian Slavic
  • Malay
  • Malayalam
  • Maori
  • Marathi
  • Norwegian Bokmål
  • Norwegian Nynorsk
  • Oriya
  • Persian
  • Polish
  • Portuguese
  • Pushto
  • Romanian
  • Russian
  • Serbian
  • Simplified Chinese
  • Sinhala
  • Slovak
  • Slovenian
  • Spanish
  • Swahili
  • Swedish
  • Tamil
  • Telugu
  • Thai
  • Tibetan
  • Traditional Chinese
  • Turkish
  • Turkmen
  • Ukrainian
  • Vietnamese
  • Welsh
Apply
Reset

Online labs provide students with the possibility to conduct scientific experiments in an online environment. Remotely-operated labs (remote labs) offer an opportunity to experiment with real equipment from remote locations. Virtual labs simulate the scientific equipment. Data sets present data from already performed lab experiments. Please use the filters on the right to find appropriate online labs for your class.

Please note that the Go-Lab Authoring Platform Graasp is no longer maintained. This means that it is not possible to create and publish new Go-Lab Inquiry Learning Spaces using the labs listed on this page. However, you can still access the labs and use them directly on the providers' websites with help of the preview links, which you will find on the dedicated lab pages. If you are interested in creating and using Inquiry Learning Spaces in your classroom, please visit the new Authoring Platform Graasp.org

If you are looking for online labs selected for the curricula of Benin, Kenya or Nigeria, please visit our Collections page.

If you select labs in Norwegian Nynorsk, the descriptions on this website will still be displayed in English. However, when you include the lab in an ILS and change the language setting of the ILS to Norwegian Nynorsk, the lab will be displayed in Norwegian Nynorsk within the ILS.

Fundamental Forces
Norwegian Nynorsk
Sort by

Rating: 3.8 - 4 votes

There are two similar labs that you can see if you create a space, feel free to choose which one to use. Please note that while the preview shows you only one, the screenshots present both labs.

Rating: 5 - 1 votes

Explore the role of pore size in the diffusion of a substance across a membrane. Diffusion is the process of a substance spreading out from its origin. Molecules diffuse through random molecular motion.

No votes have been submitted yet.

Do you ever wonder how a greenhouse gas affects the climate, or why the ozone layer is important? Use the sim to explore how light interacts with molecules in our atmosphere.

Rating: 4 - 1 votes

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, the strength of gravity, and the amplitude of the swing. Observe the energy in the system in real-time, and vary the amount of friction.

No votes have been submitted yet.

Learn about conservation of energy with a skater dude! Explore different tracks and view the kinetic energy, potential energy and friction as he moves. Build your own tracks, ramps and jumps for the skater. Aims of the lab:

Rating: 3 - 2 votes

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram. Sample Learning Goals

No votes have been submitted yet.

When is a molecule polar? Change the electronegativity of atoms in a molecule to see how it affects polarity. See how the molecule behaves in an electric field. Change the bond angle to see how shape affects polarity.Sample Learning Goals

No votes have been submitted yet.

Explore molecule shapes by building molecules in 3D! How does molecule shape change with different numbers of bonds and electron pairs? Find out by adding single, double or triple bonds and lone pairs to the central atom. Then, compare the model to real molecules!

No votes have been submitted yet.

Explore the relationship between the temperature of a gas and its volume. This is commonly known as Charles's Law. The volume of a gas tends to increase as the temperature increases. Primary aims of the Lab: 1) To learn about Charles's Law

No votes have been submitted yet.

Explore the relationship between the temperature of a gas and the pressure it exerts on its container. This is commonly known as Gay-Lussac's Law or Amontons' Law of Pressure-Temperature. As the temperature of a gas increases, the pressure it exerts on its container will increase.