Online labs provide your students with the possibility to conduct scientific experiments in an online environment. Remotely-operated labs (remote labs) offer an opportunity to experiment with real equipment from remote locations. Virtual labs simulate the scientific equipment. Data sets present data from already performed lab experiments. Please use the filters on the right to find appropriate online labs for your class. Labs can be combined with dedicated Apps to create Inquiry Learning Spaces (ILSs).

If you are looking for online labs especially suitable for the curricula of Benin, Kenya or Nigeria, please visit our Collections page.

If you select labs in Maori, the descriptions on this website will still be displayed in English. However, when you include the lab in an ILS and change the language setting of the ILS to Maori, the lab will be displayed in Maori within the ILS.

No votes have been submitted yet.

How do you know if a chemical equation is balanced? What can you change to balance an equation? Play a game to test your ideas! Primary aims of the lab:

Rating: 2 - 1 votes

Explore the forces at work when pulling against a cart,and pushing a refrigerator, crate, or person. Create an applied force and see how it makes objects move. Change friction and see how it affects the motion of objects.Aims of the lab:

No votes have been submitted yet.

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white light. View the light as a solid beam, or see the individual photons.Aims of the lab:

No votes have been submitted yet.

Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away. Primary aims of the labDescribe a model for friction a molecular level.

No votes have been submitted yet.

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram. Sample Learning Goals

No votes have been submitted yet.

Create your own shapes using colorful blocks and explore the relationship between perimeter and area. Compare the area and perimeter of two shapes side-by-side. Challenge yourself in the game screen to build shapes or find the area of funky figures. Try to collect lots of stars!

No votes have been submitted yet.

Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's resistance. The sizes of the symbols in the equation change along with the diagram of a wire. Primary aims:

No votes have been submitted yet.

Match shapes and numbers to earn stars in this fractions game. Challenge yourself on any level you like. Try to collect lots of stars! Learning goals:

No votes have been submitted yet.

Stretch and compress springs to explore the relationships between force, spring constant, displacement, and potential energy! Investigate what happens when two springs are connected in series and parallel.

No votes have been submitted yet.

"The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer!Primary aims:

No votes have been submitted yet.

Light a light bulb by waving a magnet. This demonstration of Faraday's Law shows you how to reduce your power bill at the expense of your grocery bill.

No votes have been submitted yet.

Explore molecule shapes by building molecules in 3D! Find out how a molecule's shape changes as you add atoms to a molecule.The primary aims of the lab are:1) Recognize that molecule shape is due to repulsions between atoms

No votes have been submitted yet.

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

No votes have been submitted yet.

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.  

No votes have been submitted yet.

Explore molecule shapes by building molecules in 3D! How does molecule shape change with different numbers of bonds and electron pairs? Find out by adding single, double or triple bonds and lone pairs to the central atom. Then, compare the model to real molecules!

No votes have been submitted yet.

Take a tour of trigonometry using degrees or radians! Look for patterns in the values and on the graph when you change the value of theta. Compare the graphs of sine, cosine, and tangent.

No votes have been submitted yet.

 This app helps to train and understand multiplacation, division and factoring.

No votes have been submitted yet.

Arrange positive and negative charges in space and view the resulting electric field and electrostatic potential. Plot equipotential lines and discover their relationship to the electric field. Create models of dipoles, capacitors, and more!

No votes have been submitted yet.

Experiment with an electronics kit! Build circuits with batteries, resistors, light bulbs, and switches.

No votes have been submitted yet.

Build coin expressions, then exchange them for variable expressions. Simplify and evaluate expressions until you are ready to test your understanding of equivalent expressions in the game!Sample Learning Goals·        Simplify expressions by combining like-terms