This model simulates the classic example of natural selection on color patterns in peppered moths (Biston betularia). When air pollution is low, lichens cover the trees and the light moths are well camouflaged. When air pollution is high, the trees become dark and the light moths stand out.
Subject Domains
- Astronomical Objects And Their Characteristics
- Astronomy Related Sciences And Fields Of Study
- Effect And Phenomena
- Terms And Concepts
- Botany
- Ecology
- Humans And Animals
- Life Processes
- Variation, Inheritance And Evolution
- Analytical Chemistry
- Chemical Reactions
- Inorganic Chemistry
- Organic Chemistry
- Physical Chemistry
- Biomedical Engineering
- Civil Engineering
- Electrical Engineering
- Mechanical Engineering
- Climate
- Energy
- Environment
- Environmental Protection
- Natural Resources
- Earth Science
- Geography
- Algebra And Number Theory
- Applied Mathematics
- Differential And Difference Equation
- Geometry
- Logic And Foundations
- Numbers And Computation
- Statistics And Probability
- Topic From Subjects
- Electricity And Magnetism
- Energy
- Fields
- Forces And Motion
- High Energy Physics
- History Of Science And Technology
- Light
- Radioactivity
- Solids, Liquids And Gases
- Sound
- Technological Applications
- Tools For Science
- Useful Materials And Products
- Waves
- Computer Science And Technology
- Design
- Electricity - Electronics
- Industry
- Mechanics
- Production
Astronomy
Biology
Chemistry
Engineering
Environmental Education
Geography And Earth Science
Mathematics
Physics
Technology
Big Ideas Of Science
- Energy Transformation
- Fundamental Forces
- Our Universe
- Structure Of Matter
- Microcosm (Quantum)
- Evolution And Biodiversity
- Organisms And Life Forms
- Planet Earth
Lab Types
- Remote Lab
- Virtual Lab
- Data Set
Age Ranges
- Before 7
- 7-8
- 9-10
- 11-12
- 13-14
- 15-16
- Above 16
Languages
- Afrikaans
- Albanian
- Arabic
- Basque
- Belarusian
- Bosnian
- Bulgarian
- Catalan
- Central Khmer
- Croatian
- Czech
- Danish
- Dutch
- English
- Estonian
- Finnish
- French
- Galician
- Georgian
- German
- Greek
- Haitian
- Hindi
- Hungarian
- Icelandic
- Italian
- Japanese
- Kannada
- Kazakh
- Korean
- Kurdish
- Lao
- Latvian
- Macedonian Slavic
- Malay
- Malayalam
- Maori
- Marathi
- Norwegian Bokmål
- Norwegian Nynorsk
- Oriya
- Persian
- Polish
- Portuguese
- Pushto
- Romanian
- Russian
- Serbian
- Simplified Chinese
- Sinhala
- Slovak
- Slovenian
- Spanish
- Swahili
- Swedish
- Tamil
- Telugu
- Thai
- Tibetan
- Traditional Chinese
- Turkish
- Turkmen
- Ukrainian
- Vietnamese
- Welsh
Apply
Reset
Online labs provide your students with the possibility to conduct scientific experiments in an online environment. Remotely-operated labs (remote labs) offer an opportunity to experiment with real equipment from remote locations. Virtual labs simulate the scientific equipment. Data sets present data from already performed lab experiments. Please use the filters on the right to find appropriate online labs for your class. Labs can be combined with dedicated Apps to create Inquiry Learning Spaces (ILSs).
If you are looking for online labs especially suitable for the curricula of Benin, Kenya or Nigeria, please visit our Collections page.

This model is an adaptation of the classic experiment conducted by Peter Buri (1956), which documented genetic drift in laboratory populations of Drosophila.

This is an updated version of an existing lab. It includes some theoretical background information and the lab which simulates MacArthur & Wilson's 1963 Island Biogeography Equilibrium paper.

This simple model simulates seining a stream for animal life. Sixteen species of;invertebrates wash down the stream. When the seine is open they may get caught and separated into buckets.

This lab is an abridged Html5 version of the Java applet lab Sexual Selection in Guppies. It has been optimized to work with tablet computers.

This model simulates Endler's 1980 classic experiment on the balance of sexual selection and natural selection. In guppies, females prefer to mate with males that have lots of spots, but those males are more easily seen by predators.

This model simulates MacArthur & Wilson's 1963 Island Biogeography Equilibrium paper. You can run virtual experiments manipulating the following: island size, distance from mainland, habitat type, and species types (e.g. birds, arthropods, etc.).

This is an updated version of the existing lab. It includes some theoretical background and the online lab, which allows students to conduct virtual experiments violating all the assumptions of Hardy-Weinberg theory (small population, selection, mutation, migration, and non-random mating).